Cours de mathématiques, à l'usage des candidates à l'École polytechnique: Géométrie élémentaire, plane et dans l'espace. Trigonométrie rectiligne et sphérique

Front Cover
Gauthier-Villars, 1882
 

Contents

Other editions - View all

Common terms and phrases

Popular passages

Page 174 - BCD sont égaux comme ayant un angle égal compris entre deux côtés égaux chacun à chacun, savoir : l'angle ABK.
Page 321 - ... de deux droits soit plus grand que la somme des deux autres et que la somme des trois angles soit supérieure à deux angles droits, car, en prenant les suppléments de ces angles comme côtés, on peut construire le triangle supplémentaire, d'où l'on déduit ensuite le triangle demandé par le tracé indiqué au n° 809. 2° On donne deux côtés a et b et Vangle compris G. Même solution qu'en Géométrie plane (145). 3° On donne deux côtés a et b et l'angle A opposé au côté a (Jïg.
Page 16 - Deux triangles sont égaux, lorsqu'ils ont un angle égal compris entre deux côtés égaux, chacun à chacun (Euclide, I, 4).
Page 324 - Il se trouve en outre sur un second cercle décrit du point A comme pôle avec une ouverture de compas égale à la corde de l'arc PA = D; car BA étant perpendiculaire sur le milieu de PBC, le point A est équidistant de P et deC (8 tri).
Page 272 - L'aire latérale d'un cône de révolution a pour mesure le produit de la circonférence de sa base par la moitié de son apothème.
Page 324 - Pour que le problème soit possible, il faut et il suffit que le triangle APC, dont on a les trois côtés, existe, c'est-à-dire qu'on ait (831 ) D<Dt -a/-, 2r<DtD, D + D-)-2/-<4.
Page 266 - Corollaire II. Deux pyramides de même hauteur sont entre elles comme leurs bases, et deux pyramides de même base sont entre elles comme leurs - hauteurs.
Page 421 - Donc, la normale à l'hyperbole est la bissectrice de l'angle formé par l'un des rayons vecteurs du point de contact et le prolongement de l'autre rayon.
Page 716 - Si d'un point pris dans le plan d'un cercle on mène des sécantes, le produit des distances de ce point aux deux points d'intersection de chaque sécante avec la circonférence est constant, quelle que soit la direction de la sécante.
Page 295 - Dès lors, si du point a comme centre, avec une ouverture de compas égale à celle qui a servi à décrire le cercle ABC sur la sphère, on décrit un petit arc de cercle jusqu'à la rencontre/» de la perpendiculaire pip' élevée en i sur ai, on forme un triangle api égal à API, et il ne reste plus qu'à élever la perpendiculaire ap' sur ap pour avoir en pp' le diamètre PP

Bibliographic information